

Rec. Nat. Prod. 4:1 (2010) 87-90

records of natural products

# Chemical Composition of the Essential Oil from Artemisia arborescens L. Growing Wild in Algeria

# Azedine Abderrahim<sup>1\*</sup>, Kamel Belhamel<sup>1</sup>, Jean-Claude Chalchat<sup>2</sup> and Gilles Figuérédo<sup>3</sup>

 <sup>1</sup> Laboratoire des Matériaux Organiques, Département de Génie des Procédés, Université A. Mira de Bejaïa, Targa Ouzemour, 06000 Bejaïa, Algérie.
 <sup>2</sup> Laboratoire de Chimie des Huiles Essentielles, Université Blaise-Pascal de Clermont, Campus des Cézeaux, 63177 Aubière cedex, France
 <sup>3</sup> Laboratoire d'Analyse des Extraits Végétaux et des Arômes (LEXVA Analytique) 460 rue du Montant, 63110 Beaumont, France

(Received June 13, 2009; Revised December 2, 2009; Accepted December 8, 2009)

**Abstract:** Essential oil extracted from dried aerial part of *Artemisia arborescens* L. collected from Bejaïa (Algeria), was analyzed by gas chromatography-flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). The main constituents of the essential oil were chamazulene (30.2%),  $\beta$ -thujone (27.8%),  $\beta$ -eudesmol (8.1%) and catalponol (5.5%).

Keywords: Artemisia arborescens L.; essential oil; GC-FID; GC-MS; chamazulene; β-thujone.

## 1. Plant Source

Artemisia arborescens L. is a medicinal and aromatic plant from the Asteraceae family. It grows wild in the maritime cliffs and the bushes of littoral hills [1]. The aerial part of Artemisia arborescens L. was collected from Bejaïa (Algeria) in April 2008. The specie was identified by the National Park of Gouraya (Bejaïa, Algeria) and a specimen was deposited, under KBAA 064 number, in Laboratory of Organic Materials, Faculty of Technology, University of Bejaïa (Algeria).

<sup>&</sup>lt;sup>\*</sup> Corresponding author: E-Mail: a\_azedine7@yahoo.fr, Phone: + 213 550 285 846, Fax: + 213 34 215 105.

#### **2. Previous Studies**

According to the literature, there are two chemo-types of *Artemisia arborescens* L. essential oil. While the first one is a rich  $\beta$ -thujone and camphor type with more than 50% of these monoterpenic ketones, the proportion of chamazulene varies between 30 to 40% for the second one (rich chamazulene type), depending on the origin of the plant [2-5].

#### **3. Present Study**

The aerial part of the plant was dried in a shade and ventilated place, then crushed to obtain a homogeneous powder to increase the efficiency of its essential oil.

The essential oil was obtained by hydrodistillation from the aerial part in a Clevenger-type apparatus in 3 hours [6]. Dichloromethane (Biochem Chemopharma, 99% purity) was used to recover the oil from the extractor apparatus. The organic phase was dried using anhydrous sodium sulphate (Cheminova Internacional, S. A., 99% purity), and then the solvent was evaporated. The essential oil was kept at 4°C before analysis.

The essential oil of Artemisia arborescens L. was analyzed on an Agilent gas chromatograph (GC-FID) Model 6890, equipped with a HP-5ms fused silica capillary column having (5%-Phenyl)methylpolysiloxane stationary phase (30 m length x 0.25 mm internal diameter and 0.25  $\mu$ m film thickness), programmed from 50°C (5 min) to 250°C at 5°C/min and held for 5 min. Injector and flame ionisation detector temperatures were 280 and 300°C, respectively. The essential oil was diluted in acetone in 3.5% (v/v), and 1  $\mu$ L was injected in split mode (1/60). Hydrogen was used as a carrier gas (1.0 mL/min). Solution of standard alkanes (C<sub>8</sub>-C<sub>26</sub>) was analyzed under the same conditions to calculate retention indices (RI) with Van Den Dool and Kratz equation [7].

Mass spectrometry was performed on an Agilent gas chromatograph-mass spectrometer (GC-MS) Model 7890/5975, programmed with the same conditions as for GC-FID (as described above). The mass spectrometer (MS) was in electron impact mode at 70 eV and electron multiplier was at 2200 V. Ion source and MS quadrupole temperatures were  $230^{\circ}$ C and  $180^{\circ}$ C, respectively. Mass spectral data were acquired in the scan mode in the *m/z* range 33-450. The essential oil constituents were identified by matching their mass spectra and retention indices (RI) with those of reference compounds from libraries such as Adams [8] and Mc Lafferty & Stauffer [9]. The proportions of the identified compounds were calculated by internal normalization.

The color of the essential oil from *Artemisia arborescens* L. aerial part is blue and the yield of hydrodistillation is 0.87% (w/w) in relation to the dry weight of the plant. Twenty one constituents were determined in the *Artemisia arborescens* L. essential oil, representing 90.5% of total content, the chemical composition of which is summarized in Table 1. The main constituents were found to be chamazulene (30.2%),  $\beta$ -thujone (27.8%),  $\beta$ -eudesmol (8.1%) and catalponol (5.5%). The major compound, chamazulene, gives the oil a blue characteristic color, percentage of which, as a constituent, varies depending on the geographical origin of the plant. Lo Presti et al. [4] reported the proportions of chamazulene in the *Artemisia arborescens* L. essential oil from three zones in Southern Italy as Calabria (27.1%), island of Lipari (34.6%) and Sicily (37.6%). Marongiu et al. [3] also indicated chamazulene with 26.64% in the hydrodistillation oil of *Artemisia arborescens* L.

In addition to our results above, we report the presence of  $\beta$ -thujone (27.8%) as a common element to several species of *Artemisia*, such as *A. absinthium* (13.7%) [10], *A. umbelliformis* Lam. (18.2%) and *A. petrosa* Baumg (16.8%) [11].

Although our results indicated that chamzulene is the main component, the current study requires to be extended to different locations to classify the essential oil of wild *Artemisia arborescens* L. grown in Bejaïa (Algeria) as a rich chamzulene type.

| RI    | Compound                           | % Composition |
|-------|------------------------------------|---------------|
| 1102  | α-thujone                          | 0.6           |
| 1114  | β-thujone                          | 27.8          |
| 1177  | terpinen-4-ol                      | 1.8           |
| 1272  | aldehyde perrilique                | 0.6           |
| 1294  | undecan-2-one                      | 2.0           |
| 1295  | alcool perrilique                  | 0.5           |
| 1377  | α-copaene                          | 0.1           |
| 1404  | methyl eugenol                     | t             |
| 1411* | 3,4-dimethyl cinnoline             | 0.4           |
| 1419  | β-caryophyllene                    | 0.6           |
| 1480  | germacrene-D                       | 1.2           |
| 1511* | nor $\beta$ -calamenene            | 0.4           |
| 1581  | oxyde de caryophyllene             | 0.6           |
| 1617* | 2,2,3-trimethylnaphtalen-1(2H)-one | 2.0           |
| 1628* | fonenol                            | 0.9           |
| 1651  | β-eudesmol                         | 8.1           |
| 1692* | phenyl hydroquinone                | 0.9           |
| 1732  | chamazulene                        | 30.2          |
| 1734* | 3,3'-dimethyldiphenyl              | 2.8           |
| 2024  | catalponol                         | 5.5           |
| 2396* | phtalate                           | 3.5           |
|       | Total identified                   | 90.5          |

 Table 1. Chemical composition of the essential oil from Artemisia arborescens L. growing wild in Algeria

RI: retention indices on DB-5 column (Adams); \*: retention indices calculated for the identified compounds from Mc Lafferty & Stauffer library; t: trace (< 0.05%).

#### Acknowledgments

We are grateful to the National Park of Gouraya (Algeria), for its invaluable help for the botanical identification of the studied plant.

### References

- [1] P. Quezel, S. Santa (1962-1963). Nouvelle flore de l'Algérie et des régions désertiques méridionales. Ed. du CNRS, Paris.
- T. Sacco, C. Frattini, C. Bicchi (1983). Constituents of Essential oil Artemisia arborescens, *Planta Med.* 47, 49-51.
- [3] B. Marongiu, A. Piras, S. Porcedda (2006). Comparative analysis of the oil and supercritical CO<sub>2</sub> extract of *Artemisia arborescens* L. and Helichrysum splendidum (Thunb.) Less., *Nat. Prod. Res.* **20**, 421-428.
- [4] M. Lo Presti, M.L. Crupi, B.d'A. Zellner, G. Dugo, L. Mondello (2007). Characterization of Artemisia arborescens L. (Asteraceae) eaf-derived essential oil from Southern Italy, *J. Essent. Oil Res.* **19**, 218-224.
- [5] C. Sinico, A. De Logu, F. Lai, D. Valenti, M. Manconi, G. Loy, L. Bonsignore, A.M. Fadda (2005). Liposomal incorporation of *Artemisia arborescens* L. essential oil and in vitro antiviral activity, *Eur. J. Pharm. Biopharm.* **59**, 161-168.
- [6] K. Belhamel, A. Abderrahim, R. Ludwig (2008). Chemical composition and antibacterial activity of the essential oil of *Schinus molle* L. grown in Algeria, *Int. J. Essent. Oil Therap.* **2**, 175-177.
- [7] J. Tranchant (1982). Manuel pratique de la chromatographie en phase gazeuse. 3<sup>e</sup> Ed. Masson, Paris.
- [8] R.P. Adams (1995). Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publishing Co. Carol Stream, Illinois.

- F.W. Mc Lafferty, D.B. Stauffer (1991). The Wiley/NBS registry of mass spectral data. 5<sup>th</sup> Edition, J. Wiley and Son, New York.
- [10] L.M. Khalilov, E.A. Paramonov, A.Z. Khalilova, V.N. Odinokov, A.A. Muldashev, U.A. Baltaev, U.M. Dzhemilev (2001). Identification and biological activity of volatile organic compounds emitted by plants and insects. IV. Composition of vapor isolated from certain species of Artemisia plants, *Chem. Nat. Comp.* **37**, 339-342.
- [11] M. Mucciarelli, R. Caramiello, M. Maffei, F. Chialva (1995). Essential oils from some *Artemisia* species growing spontaneously in north-west Italy, *Flav. Fragr. J.* **10**, 25-32.



© 2010 Reproduction is free for scientific studies